Change point testing in logistic regression models with interaction term.
نویسندگان
چکیده
A threshold effect takes place in situations where the relationship between an outcome variable and a predictor variable changes as the predictor value crosses a certain threshold/change point. Threshold effects are often plausible in a complex biological system, especially in defining immune responses that are protective against infections such as HIV-1, which motivates the current work. We study two hypothesis testing problems in change point models. We first compare three different approaches to obtaining a p-value for the maximum of scores test in a logistic regression model with change point variable as a main effect. Next, we study the testing problem in a logistic regression model with the change point variable both as a main effect and as part of an interaction term. We propose a test based on the maximum of likelihood ratios test statistic and obtain its reference distribution through a Monte Carlo method. We also propose a maximum of weighted scores test that can be more powerful than the maximum of likelihood ratios test when we know the direction of the interaction effect. In simulation studies, we show that the proposed tests have a correct type I error and higher power than several existing methods. We illustrate the application of change point model-based testing methods in a recent study of immune responses that are associated with the risk of mother to child transmission of HIV-1.
منابع مشابه
Factors Influencing Drug Injection History among Prisoners: A Comparison between Classification and Regression Trees and Logistic Regression Analysis
Background: Due to the importance of medical studies, researchers of this field should be familiar with various types of statistical analyses to select the most appropriate method based on the characteristics of their data sets. Classification and regression trees (CARTs) can be as complementary to regression models. We compared the performance of a logistic regression model and a CART in predi...
متن کاملTesting change-point in logistic models with covariate measurement error
We test the presence of a change of slope in a logistic regression model with covariate measured with errors. Under the null hypothesis of no change-point, estimation of a single intercept and slope can be carried out straightforwardly by various conditional score based methods. If the alternative hypothesis holds and indeed there exists a change-point, estimation becomes more challenging, neve...
متن کاملEstimating the Time of a Step Change in Gamma Regression Profiles Using MLE Approach
Sometimes the quality of a process or product is described by a functional relationship between a response variable and one or more explanatory variables referred to as profile. In most researches in this area the response variable is assumed to be normally distributed; however, occasionally in certain applications, the normality assumption is violated. In these cases the Generalized Linear Mod...
متن کاملSingle and multiple time-point prediction models in kidney transplant outcomes
This study predicted graft and recipient survival in kidney transplantation based on the USRDS dataset by regression models and artificial neural networks (ANNs). We examined single time-point models (logistic regression and single-output ANNs) versus multiple time-point models (Cox models and multiple-output ANNs). These models in general achieved good prediction discrimination (AUC up to 0.82...
متن کاملTesting Hypotheses About Interaction Terms in Nonlinear Models
A recent, widely discussed contribution to econometric practice by Ai and Norton (2003) has proposed an approach to analyzing interaction effects of variables in nonlinear models. The authors focus attention on a binary choice (logit) model, though their results are easily extended to other nonlinear models. The main result of the study applies to a model that contains an interaction term, such as
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Statistics in medicine
دوره 34 9 شماره
صفحات -
تاریخ انتشار 2015